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Анотація. У цьому дослідженні представлено структуру для автомати-

зації польотних процесів безпілотних літальних апаратів (БПЛА) з основним 

фокусом на точному плануванні траєкторії для забезпечення ефективної 

взаємодії з навколишнім середовищем. Запропонована система включає в себе 

тривимірну модель руху, яка динамічно коригує траєкторії на основі факторів 

навколишнього середовища, підвищуючи адаптивність БПЛА до мінливих 

умов. 

У структурі було використано систему нечіткого висновку, для усунення 

невизначеностей, спричинених шумом датчиків, зовнішніми перешкодами та 

обмеженнями керування. Цей підхід обробляє неточні вхідні дані, такі як 

помилки позиції та швидкості, використовуючи лінгвістичні змінні та 

прийняття рішень на основі правил. Перетворюючи точні вхідні дані в нечіткі 

набори та застосовуючи експертні правила, система ефективно пом’якшує 

https://doi.org/10.52058/2786-6025-2025-10(51)
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нелінійність і дестабілізуючі впливи, забезпечуючи надійні стратегії керування 

операціями БПЛА. 

У структуру також було інтегровано нейронні мережі довгої коротко-

часної пам’яті (long short-term Memory – LSTM) для прогнозування майбутніх 

змін навколишнього середовища та дестабілізуючих факторів.  

Використовуючи історичні дані, архітектура LSTM моделює довго-

строкові тимчасові залежності, уможливлюючи проактивне коригування 

траєкторії. Ця здатність прогнозування є критично важливою для підтримки 

стабільності та точності в динамічних середовищах. 

Щоб підвищити екологічну обізнаність у реальному часі, у систему було 

включено технологію радіочастотної ідентифікації (RFID). Активні та пасивні 

RFID-мітки надають дані про контекстну локалізацію, підтримують уникнення 

перешкод і оптимізацію траєкторії. Поєднуючи локалізацію на основі RFID з 

фільтром  

Калмана, система забезпечує точне просторове визначення та рекурсивне 

прийняття рішень, зменшуючи помилки передбачення та покращуючи точність 

навігації. 

Експериментальна перевірка була проведена за допомогою БПЛА DJI 

Matrice 210, оснащеного вдосконаленими датчиками та вбудованим обчислю-

вальним модулем NVIDIA Jetson TX2. Безпілотний літальний апарат успішно 

долав середовище з чисельними перешкодами, позначене мітками RFID, за 

різних умов вітру.  

Система продемонструвала високу точність відстеження траєкторії, 

зберігаючи середньоквадратичну похибку 0,22 метра, безпечну дистанцію 

проходження перешкоди 2,8 метра та швидкий час реакції 0,5 секунди для 

початку превентивних маневрів. 

Ця комплексна структура поєднує в собі нечітку логіку, нейронні мережі 

та локалізацію на основі RFID для створення надійної архітектури керування 

БПЛА. Незважаючи на такі проблеми, як високі обчислювальні вимоги та 

залежність від інфраструктури RFID, дослідження підкреслює значні досягн-

ення в автоматизації БПЛА. Майбутні дослідження спрямовані на покращення 

координації кількох БПЛА та оптимізацію операцій за допомогою покращеної 

інтеграції апаратного забезпечення та методів паралельної обробки даних. 

Ключові слова: адаптивне управління, динаміка середовища, пом’якше-

ння невизначеності, послідовне прогнозування, автономна навігація, обробка в 

реальному часі. 
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MATHEMATICAL MODELING OF TRANSPORT NETWORK 

EXPANSION IMPACT ON THE OPTIMIZATION OF LAST-KILOMETER 

DELIVERY EFFICIENCY IN URBAN LOGISTICS SYSTEMS 

 

Abstract. This study presents an advanced framework for automating the flight 

processes of unmanned aerial vehicles (UAVs), with a primary focus on precise 

trajectory planning to ensure effective interaction with the environment. The 

proposed system incorporates a three-dimensional motion model that dynamically 

adjusts trajectories based on environmental factors such as wind, enhancing UAV 

adaptability to changing conditions. 

To address uncertainties caused by sensor noise, external disturbances, and 

control limitations, the framework employs a fuzzy inference system. This approach 

processes imprecise input data, such as positional and velocity errors, using linguistic 

variables and rule-based decision-making. By converting precise inputs into fuzzy 

sets and applying expert-defined rules, the system effectively mitigates nonlinearities 

and destabilizing influences, providing robust control strategies for UAV operations. 

The framework also integrates Long Short-Term Memory (LSTM) neural 

networks to predict future environmental changes and destabilizing factors. 

Leveraging historical data, the LSTM architecture models long-term temporal 

dependencies, enabling proactive trajectory adjustments. This predictive capability is 

critical for maintaining stability and accuracy in dynamic environments. 

To enhance real-time environmental awareness, the system incorporates Radio 

Frequency Identification (RFID) technology. Active and passive RFID tags provide 

contextual localization data, supporting obstacle avoidance and trajectory 

optimization.  

By combining RFID-based localization with a Kalman filter, the system 

achieves precise spatial awareness and recursive decision-making, reducing 

prediction errors and improving navigation accuracy. 
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Experimental validation was conducted using a DJI Matrice 210 UAV 

equipped with advanced sensors and an onboard NVIDIA Jetson TX2 computing 

module. The UAV successfully navigated obstacle-rich environments marked with 

RFID tags under varying wind conditions. The system demonstrated high trajectory 

tracking precision, maintaining a root mean square error of 0.22 meters, a safe 

obstacle clearance distance of 2.8 meters, and a rapid response time of 0.5 seconds 

for initiating preventive maneuvers. 

This comprehensive framework combines fuzzy logic, neural networks, and 

RFID-based localization to create a robust UAV control architecture. Despite 

challenges such as high computational requirements and reliance on RFID 

infrastructure, the study highlights significant advancements in UAV automation. 

Future research aims to enhance multi-UAV coordination and optimize operations 

through improved hardware integration and parallel data processing techniques. 

Keywords: adaptive control, environmental dynamics, uncertainty mitigation, 

sequential prediction, autonomous navigation, real-time processing. 

 

Постановка проблеми. Стрімкий розвиток індустрії безпілотних 

літальних апаратів здійснив значний вплив на різні галузі сучасної діяльності, 

як у випадку з логістикою, агрокультурою та моніторингом навколишнього 

середовища. Тим не менш, враховуючи сталу тенденцію до більшої 

вимогливості щодо характеру здійснення безпілотних літальних операцій, 

постає нагальна потреба до більшої автоматизації процесів обробки 

невизначеностей, які насамперед пов’язуються із навколишніми умовами, у 

програмно-сенсорних системах таких апаратів. 

Застосування традиційних методів, які наприклад опосередковані 

використанням пропорційно-інтегрально-диференційних регуляторів, назем-

них станцій управління тощо, пов’язане з менш ефективним доланням 

зазначених обмежень. 

Таким чином, базою для поточного дослідження було визначено 

використання технологій радіочастотної ідентифікації, довгої короткочасної 

пам’яті та нечіткого висновку. Така комбінація є теоретично спроможною 

здійснювати обробку параметрів нелінійної динаміки та ситуаційних невизна-

ченостей, які завжди супроводжують політ БПЛА в мовах навколишнього 

середовища. 

Аналіз останніх досліджень і публікацій. У науково-дослідницькому 

просторі сьогодення з’являються роботи, присвячені розробці методології, 

направленої на автоматизації процесу побудови траєкторії та орієнтації БПЛА. 

З. Чжу, Хе Дж., Л. Хоу, Л. Сюй, В. Чжу, Л. Ван [1] було розглянуто 

проблему екстреної локалізації для динамічних наземних користувачів у 

сценаріях пошуку та порятунку, коли є GPS недоступним.  
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Запропоноване рішення фокусується на адаптивному плануванні 

траєкторії БПЛА з використанням стратегії без зависання та оцінки 

максимальної ймовірності (Maximum Likelihood Estimation – MLE) для 

ефективної та точної локалізації мобільних користувачів. Дослідження 

представляє двоетапний підхід, який включає початкове сканування для 

отримання приблизних даних про місцезнаходження та фазу точної локалізації 

для уточнення планування траєкторії БПЛА. 

На початковому етапі сканування зона катастрофи ділиться на комірки, а 

БПЛА покривають ці зони для збору даних індикатора індикатору рівня 

отриманого сигналу (Received Signal Strength Indicator – RSSI). MLE 

використовується для оцінки розташування та швидкості захоплених осіб, 

враховуючи їхню мобільність для визначення верхньої межі похибки 

локалізації. Ця фаза дозволяє БПЛА ефективно звузити потенційні місця 

розташування користувачів, мінімізуючи витрати на обчислення [1]. 

Фаза точної локалізації об’єднує алгоритм розширеної оптимізації роїв 

частинок (Enhanced Particle Swarm Optimization – EPSO) у поєднанні зі 

стратегією доступу до країв для оптимізації планування траєкторії. EPSO долає 

традиційні обмеження алгоритму, покращуючи швидкість конвергенції та 

уникаючи локальних оптимумів. Цей підхід скорочує загальний час виконання 

завдання та підтримує високу точність локалізації шляхом динамічного 

коригування траєкторій БПЛА на основі рухів користувача. 

Моделювання підтверджує ефективність запропонованого методу в 

сценарії катастроф із змодельованою зоною 1120 м × 640 м і кількома 

БПЛА. Результати демонструють скорочення часу виконання завдання 

локалізації на 28,7% порівняно з базовими методами, а також покращену 

точність локалізації. Запропонована структура MLE-EPSO ефективно поєднує 

складність завдань, обчислювальну ефективність і точність локалізації, що 

робить її надійним рішенням для надзвичайних ситуацій [1]. 

У роботі З. Ма, Дж. Чень [2] представлено особливості планування 

траєкторії БПЛА шляхом використання дискретної глобальної сітки (Discrete 

Global Grid System – DGGS) для підвищення ефективності виявлення 

конфліктів. Центральним у цьому підході є розробка багатомасштабної 

дискретно-шарової сітки (Multi-Scale Discrete Layered Grid – MS-DLG), яка 

вдосконалює управління сіткою через вертикальну та горизонтальну 

інтеграцію структур сітки. Ця модель значно зменшує обчислювальну 

складність за рахунок консолідації шарів сітки та оптимізації представлення 

обмежень повітряного простору. 

Ґрунтуючись на основі моделі MS-DLG, адаптивний метод планування 

траєкторії використовує PSO і містить низку вдосконалень, адаптованих до 

конкретних вимог БПЛА. Ці вдосконалення включають динамічне коригування 
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розмірів частинок під час оптимізації, уточнені стратегії ініціалізації на основі 

характеристик траєкторії БПЛА та диференційовані механізми оновлення 

положення, які класифікують частинки за категоріями для оптимізації 

коригування їх траєкторії. Ці модифікації разом підвищують ефективність і 

точність планування траєкторії БПЛА, дозволяючи ідентифікувати оптимальні 

маршрути, які збалансовують довжину траєкторії, безпеку та дотримання 

правил повітряного простору [2]. 

Ефективність методу була ретельно підтверджена шляхом моделювання, 

проведеного в різноманітних і складних сценаріях повітряного простору, 

включаючи реальні дані та різні рівні складності навколишнього середовища. 

Результати показують, що адаптивний метод планування шляху перевершує 

традиційні та модифіковані алгоритми PSO за ключовими показниками, такими 

як оптимальність рішення, показники успіху та ефективність обчислень. Крім 

того, модель MS-DLG демонструє значне покращення швидкості виявлення 

конфліктів порівняно з існуючими системами керування мережею, що 

підкреслює її корисність у великомасштабних середовищах повітряного 

простору [2]. 

Крім того, варто зазначити праці наступних науковців: В. Лю, З. Чжен, 

К. Цай [3], Л. Ван, Дж. Чжан, Дж. Чуань, Р. Ма, А. Фей [4], Х. Ву, Дж. Чень, 

В. Сюй, Н. Чен, В. Ши, Л. Ван, Х. Шень [5], Х. Ву, Ф. Лю, С. Чжоу, Дж. Чень, 

Л. Ван, X. Шень [6], Г. Хань, X. Ян, Л. Лю, В. Чжан, М. Гуйцзані [7] та інших. 

Незважаючи на наявність вагомих наукових напрацювань у цій сфері, 

проблема автоматизації побудови траєкторії руху та орієнтації БПЛА не має 

вичерпного наукового розв’язання. Вона потребує подальшого поглибленого 

дослідження та розроблення ефективних методів її реалізації. 

Метою статті є розробка комбінованої архітектури автоматизації 

польоту БПЛА шляхом використання RFID-маркерів, LSTM мережі та моделі 

нечіткого висновку 

Виклад основного матеріалу. Основоположним напрямком в автома-

тизації літальних процесів БПЛА, насамперед, є забезпечення точного 

планування траєкторії, оскільки від цього залежить характер взаємодії БПЛА з 

навколишнім середовищем. Система рухів БПЛА може бути змодельована із 

застосуванням розширеної алгоритмічної бази, яка враховуватиме параметри 

тривимірного простору та фактори навколишнього середовища, які 

проявляються, наприклад, у вигляді вітру. Позиційний вектор 𝑥(𝑡) =
[𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)]⊤ з врахуванням проміжку часу 𝑡 описується таким чином: 

 

𝑥̇(𝑡) = 𝑉(𝑡)cos(𝜒(𝑡))cos(𝛾(𝑡)) + 𝑉𝑊𝑥
(𝑡) (1) 

𝑦̇(𝑡) = 𝑉(𝑡)sin(𝜒(𝑡))cos(𝛾(𝑡)) + 𝑉𝑊𝑦
(𝑡) (2) 

𝑧̇(𝑡) =  𝑉(𝑡) sin(𝑦(𝑡))  +  𝑉𝑊𝑧
(𝑡) (3) 
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𝜒̇(𝑡) =  
𝑔

𝑉(𝑡)
 𝑡𝑎𝑛(𝜑(𝑡)) (4) 

𝛾̇(𝑡) =  𝑢𝛾(𝑡) (5) 

 

де 𝑉(𝑡)  відповідає скорості польоту БПЛА, 𝜒(𝑡)  – кут направлення 

апарату (азимут), 𝛾(𝑡) – кут траєкторії польоту (тангаж), 𝑉𝑊𝑥
(𝑡), 𝑉𝑊𝑦

(𝑡), 𝑉𝑊𝑧
(𝑡) 

відповідають швидкостям вітру у відповідності до супровідних осей. 

Врахування та впровадження у систему параметрів вітру дозволяє БПЛА 

динамічно підлаштовувати свою траєкторію у відповідь до мінливих погодних 

умов. Тим не менш, беручи до уваги той факт, що БПЛА часто вико-

ристовуються в умовах невизначеностей, які спричиняються шумом датчиків, 

приводовими обмеженнями та зовнішніми дестабілізуючими факторами, 

постає необхідність у використанні адаптивних технологій машинного 

навчання, у даному випадку – нечіткого висновку. Системи нечіткого висновку 

спроможні нівелювати негативні впливи описаних факторів, застосовуючи 

лінгвістичні змінні та концепцію нечіткої логіки задля моделювання стратегій 

керування апаратом. Тобто суть полягає в обробці неточних вхідних даних та 

нелінійної системної динаміки. 

Розробка такої системи керування передбачає перетворення чітких 

вихідних змінних у нечіткі набори за посередництвом процесу під назвою 

фазифікація (fuzzification – знеточнення). Задля демонстрації, прикладами 

таких чітких змінних можуть бути позиційна помилка 𝑒𝑝 та швидкісна помилка 

𝑒𝑣 . Функції належності визначають спосіб того, як кожна точка у вхідному 

просторі зіставляється до ступеня належності від 0 до 1, застосовуючи маркери: 

«негативний великий (НВ)», «нуль (0) та «позитивний великий (ПВ)». 

База правил встановлюється з використанням експертних знань з метою 

визначення результуючих дій. Правило може виражатися у вигляді умови: 

«ЯКЩО 𝑒𝑝 та 𝑒𝑣 присвоєно НВ, ТОДІ результуючому виходу 𝑢 u присвоюється 

ПВ.». Архітектура нечіткого висновку застосовує такі правила з метою 

обчислення нечітких вихідних даних, спираючись на ступені належності 

вхідних даних. Процедура дефазифікації перетворює нечіткі вихідні дані 

зворотно у чіткі вхідні дані під впливом центроїдного обчислення. 

З точки зору математичної репрезентації, результуючий вихід 

обчислюється у вигляді наступного рівняння: 

 

𝑢 =
∑ ∑ 𝜇𝑖(𝑒𝑝)⋅𝜇𝑗(𝑒𝑣)⋅𝑢𝑖𝑗

𝑀
𝑗=1

𝑁
𝑖=1

∑ ∑ 𝜇𝑖(𝑒𝑝)⋅𝜇𝑗(𝑒𝑣)
𝑀
𝑗=1

𝑁
𝑖=1

 (6) 

де 𝑁 та 𝑀 чисельно позначають нечіткі набори даних для позиційної та 

швидкісної помилок, 𝜇𝑖(𝑒𝑝) та 𝜇𝑗(𝑒𝑣) відповідають функціям належності, 𝑢𝑖𝑗 – 

результуючий вихід, асоційований із нечіткими наборами даних 𝑖 та 𝑗. 
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Адаптивне керування з автоматичним побудуванням траєкторії не має в 

змозі бути реалізованими без інтеграції системи предиктивного контролю. В 

контексті поточного дослідження дану роль виконує концепція нейронних 

мереж на основі LSTM провідною суттю яких є моделювання довгострокових 

часових залежностей у секвенційних даних, що є необхідним для передбачення 

майбутніх умов та дестабілізуючих факторів. 

Мережа LSTM складається з блоків пам’яті, які зберігають інформацію 

протягом порівняно великих проміжків часу. Кожен блок містить ворота 

(гейти), основною задачею яких є регуляція потоків інформації: 

 

𝑓𝑡  =  𝜎(𝑊𝑓 [ℎ𝑡 – 1, 𝑥𝑡] + 𝑏𝑓) (7) 

𝑖𝑡  =  𝜎(𝑊𝑖  [ℎ𝑡 – 1, 𝑥𝑡] + 𝑏𝑖) (8) 

𝑐̃𝑡  = tanh(𝑊𝑐[ℎ𝑡 – 1, 𝑥𝑡 ] + 𝑏𝑐) (9) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡–1  + 𝑖𝑡  ⊙ 𝑐̃𝑡 (10) 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡 – 1, 𝑥𝑡 ] + 𝑏𝑜) (11) 

ℎ𝑡  = 𝑜𝑡 ⊙ tanh(𝑐𝑡) (12) 

 

де 𝑥𝑡  відповідає вхідному вектору з урахуванням часу 𝑡, 𝜎 – сигмоїдна 

активаційна функція, tanh – гіперболічна тангенсоїдна функція, ⊙ позначає 

поелементну мультиплікацію, 𝑊 та 𝑏 – вагові матриці та вектори зміщення, 

відповідно. 

Впровадження секвенційних сенсорних даних та історичних дій, 

спрямованих на керування БПЛА у мережу LSTM дає змогу літальному 

апаратові передбачувати усі можливі зміни у навколишньому середовищі, 

враховуючи процедуру тренування цієї мережі мінімізацією функції втрат, що 

засновується на імплементації середньої квадратичної помилки (Mean Squared 

Error – MSE): 

 

MSE =
1

𝑁
∑ ‖𝑌𝑡– 𝑌̂𝑡‖

2𝑁
𝑡=1  (13) 

 

де 𝑁 являє собою число часових кроків, 𝑌𝑡 – саме цільовий вихід та 𝑌̂𝑡 – 

передбачуваний вихід. 

Задля оптимізованої реєстрації вхідних даних, з подальшою їх точною 

обробкою у реальному часі, у систему інтегруються маркери RFID (Radio-

frequency identification – радіочастотна ідентифікація) з їх розподіленням на 

активне та пасивне живлення. Загалом, дана технологія уможливлює взаємодію 

БПЛА з його оточенням завдяки зчитуванню інформації з маркерів, 

розташованих у певних умовах на складових частинах оточуючого ландшафту, 

та що живляться електромагнітним полем, яке опосередковане впливом 
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зчитувача, як у випадку з пасивним застосуванням, так і тих, що мають власне 

джерело живлення, як у випадку з активним. 

Живлення 𝑃𝑟 , яке забезпечує RFID-зчитувач з маркера моделюється за 

посередництвом формули передачі Фрііса: 

 

𝑃𝑟 = 𝑃𝑡𝐺𝑡𝐺𝑟(
𝜆

4𝜋𝑅
)2𝜂   (13) 

 

де 𝑃𝑡  позначає передаване живлення, 𝐺𝑡 , 𝐺𝑟  відповідають виграшу від 

передавальних та рецепторних антен відповідно, 𝜆 позначає довжину хвилі, 𝑅 

– дистанція між зчитувачем та маркером, 𝜂 – ефективність передачі живлення 

маркера.  

Вимірюючи даний параметр, БПЛА може оцінювати дистанцію до 

маркера, що в свою чергу сприяє покращеній локалізаційній обізнаності. 

Локалізація, опосередкована RFID, може бути досягнута завдяки підходу на 

базі індикатору рівня отриманого сигналу (Received Signal Strength Indicator – 

RSSI): 

 

𝑅 = 𝑅0 × 10
(𝑃0–𝑃𝑟

10𝑛
) (14) 

 

де 𝑅0 відповідає початкові відстані 𝑃0 – отриманий рівень живлення при 

початковій відстані 𝑛 є показник втрат, отриманий під час руху БПЛА. 

Процедура фільтрації Калмана продемонструвала потенціал щодо 

з’єднання вхідних даних, отриманих в процесі зчитування інформації з RFID 

маркерів з вище згаданими типами вхідних даних, в результаті підвищуючи 

просторову оцінку та підсумкове прийняття рішень. Воно забезпечує рекур-

сивну оцінку шляхом мінімізації середнього значення помилок MSE. 

Дана операція здійснюється завдяки передбачуванню стану у кожен 

часовий крок та подальшому його оновленню як у моделі так і у вимірюваннях. 

Становий вектор БПЛА x𝑘  на кожен часовий крок 𝑘  включає змінні позиції, 

швидкості та орієнтаці: 

x𝑘 =

[
 
 
 
 
 
 
 
 
𝑥𝑘

𝑦𝑘

𝑧𝑘

𝑥̇𝑘

𝑦̇𝑘

𝑧̇𝑘

𝜃𝑘

𝜙𝑘

𝜓𝑘]
 
 
 
 
 
 
 
 

 (15) 
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із врахуванням даної матриці, стан апарату оновлюється згідно з 

динамічною моделлю: 

 

x𝑘 = F𝑘–1x𝑘–1 + B𝑘–1u𝑘–1 + wk – 1 (16) 

 

де 𝐹𝑘–1 вказує на матрицю зміни стану, вилучену з кінематичних рівнянь 

БПЛА, в той час як 𝐵𝑘–1 відповідає матриці контрольного входу, u𝑘–1 – вектор 

цього входу, який може виражатися у вигляді тяги двигуна та відхилень 

керуючої системи, і wk – 1  –шум, що обробляється, гаусова властивість якого 

припускається із нульовим середнім значенням та коваріантністю Qk – 1 

Сенсорні виміри інкорпоруються через обсервативну модель: 

 

z𝑘 = H𝑘x𝑘 + vk   (16) 

 

де z𝑘  визначає вимірювальний вектор на часовий крок, H𝑘  – 

обсервативна матриція, яка відображає станові змінні у вимірюваннях сенсорів 

та маркерів. 

Як вже було зазначено, фільтр Калмана працює рекурсивним чином із 

розподілом на два кроки, перший з який полягає у передбаченні за 

посередництвом оцінювання поточного стану, спираючись на минулі стани та 

динаміку системи: 

 

x̂𝑘|𝑘–1 = F𝑘–1x̂𝑘|𝑘–1 + B𝑘–1u𝑘–1 (17) 

P𝑘|𝑘–1 = F𝑘–1P𝑘–1|𝑘–1F𝑘–1
⊤ Q𝑘–1 (18) 

де x̂𝑘|𝑘–1  представляє оцінку передбачуваного стану та P𝑘|𝑘–1 – 

коваріантна матриця передбачуваного стану, яка відображає неточність 

передбачення. 

Другий крок полягає у оновленні шляхом уточнення проведеного 

передбачення, за допомогою використання нових сенсорних вимірювань: 

 

y𝑘 = z𝑘–H𝑘x̂𝑘|𝑘–1 (19) 

S𝑘 = H𝑘P𝑘|𝑘–1H𝑘
⊤ + R𝑘 (20) 

K𝑘 = P𝑘|𝑘–1H𝑘
⊤S𝑘

–1 (21) 

x̂𝑘|𝑘 = x̂𝑘|𝑘–1 + K𝑘y𝑘 (22) 

P𝑘|𝑘 = (I–K𝑘H𝑘)P𝑘|𝑘–1 (23) 

 

де y𝑘 відіграє роль іновативної різниці, або результативної помилки, яка 

репрезентує різницю між спостережуваними та передбачуваними вимірю-

ваннями, S𝑘  – іновативна коваріантність, K𝑘  – матриця виграшу Калмана, 
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присвоєна вимірюванням, та I  – ідентифікаційна матриця. Таким чином, 

кінематична алгоритмічна база БПЛА доповнюється позиційними RFID-

залежними коректуваннями 𝛥𝑥𝑅𝐹𝐼𝐷
, 𝛥𝑦𝑅𝐹𝐼𝐷

, 𝛥𝑧𝑅𝐹𝐼𝐷
. 

В кінцевому випадку, після фіксації основних ланок запропонованої 

моделі, необхідно здійснити її узагальнення, що зображене на рисунку 1. 

 

 
Рис. 1. Архітектура запропонованої моделі автоматизації польоту БПЛА 

 

Симуляція роботи БПЛА проводилася в умовах його навігації через 

середовище з наявними перешкодами, обладнаними RFID-маркерами та впли-

вами, опосередкованими варіативністю вітру. Оцінка продуктивності автоном-

ного польоту БПЛА спиралася на характеристики відслідковування траєкторії, 

уникнення перешкод, адаптивності та обчислювальної навантаженості. 

Експериментальна установка включала квадрокоптерний БПЛА DJI Matrice 

210, оснащений стандартними сенсорами: інерційний вимірювальний модуль, 

Апаратні 
сенсори та 
RFID-
маркери

Модуль 
зʼєднання та 
попередньої 
обробки 
даних

Предиктив-
ний LSTM-

модуль

Система 
керування на 
базі 
нечіткого 
висновку

Модуль 
запуску

Моніторин-
говий модуль 

зворотнього 
звʼязку

– спостереження за роботою 

БПЛА та його взаємодією з 

навколишнім середовищем; 

– реінтеграція даних у модуль 

зʼєднання даних задля 

подальшого оновлення 

– збір даних з 

навколишнього 

середовища БПЛА. 

 

– збір нечітких змін 

щодо поточного 

стану апарату та 

передбачень з LSTM-

мережі => подальше 

прийняття рішень. 

– використання 

попередньо 

оброблених даних 

задля 

формулювання 

передбачення. 

– активація 

команд 

керування з 

метою 

підлаштування 

руху БПЛА. 

– комбінування 

даних з RFID-

маркерів; 

– фільтрація 

сенсорних 

шумів; 

– фазифікація 

вхідних даних. 
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GPS, камери та RFID-зчитувач. Бортовий комп’ютер мав у своєму складі 

графічний модуль NVIDIA Jetson TX2 із встановленим Ubuntu 18.04 LTS. 

Результати оцінювання показали, що інтегрована апаратно-програмна 

архітектура сприяла підтримці високої точності будування та відслідковування 

траєкторії польоту. Середнє середньоквадратичне відхилення при цьому склало 

близько 0.22 метрів, що свідчить про вивірену навігацію. До того ж, БПЛА було 

витримано середню мінімальну роздільну відстань в районі 2.8 метрів та 

середній час відгуку склав 0.5 секунд, починаючи від розпізнавання та ініціації 

превентивних маневрів. 

Висновки. Загалом, запропонована архітектура спирається комбіновану 

методологію, що створює синергійний ефект у відношенні автоматизації 

безпілотних літальних апаратів. Система нечіткого висновку спеціалізується на 

обробці нечітких дестабілізуючих ефектів та нелінійностей керування апара-

том; LSTM мережа ставить за мету передбачення майбутніх дестабілізуючих 

ефектів, беручи за основу історичні дані. RFID-маркери забезпечують 

інтерактивну контекстну інформацію, покращуючи локалізаційну спромож-

ність апарата підлаштовуватися до дестабілізаційних факторів та його обізна-

ність у навколишньому середовищі. 

Попри усі виявлені переваги запропонованої методології, вона не 

позбавлена наочних недоліків, які насамперед проявляються у вигляді завище-

них обчислювальних ресурсів, які мають долатися дорожчим обладнанням у 

поєднанні з технікою паралельної обробки даних. Окрім того, залежність від 

RFID інфраструктури може накласти обмеження з локалізаційної точки зору та 

вимагати розгортання в спеціалізованих зонах. 

Майбутнє дослідження фокусуватиметься на аналізі інтеграції RFID-

маркерів у ключові деталі БПЛА задля унікальної ідентифікації індиві-

дуального апарату в умовах одночасної роботи кількох БПЛА з метою 

уникнення потенційних зіткнень або їх координації в контексті виконання 

спільної задачі. Також таке вдосконалення може пропонувати покращену 

обчислювальну комунікацію, сприяти контрольованому процесу приземлення 

та зарядки і запобігати неавторизованому доступу. 
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